Package: CopSens 0.1.0
Jiajing Zheng
CopSens: Copula-Based Sensitivity Analysis for Observational Causal Inference
Implements the copula-based sensitivity analysis method, as discussed in Copula-based Sensitivity Analysis for Multi-Treatment Causal Inference with Unobserved Confounding <arxiv:2102.09412>, with Gaussian copula adopted in particular.
Authors:
CopSens_0.1.0.tar.gz
CopSens_0.1.0.zip(r-4.5)CopSens_0.1.0.zip(r-4.4)CopSens_0.1.0.zip(r-4.3)
CopSens_0.1.0.tgz(r-4.4-any)CopSens_0.1.0.tgz(r-4.3-any)
CopSens_0.1.0.tar.gz(r-4.5-noble)CopSens_0.1.0.tar.gz(r-4.4-noble)
CopSens_0.1.0.tgz(r-4.4-emscripten)CopSens_0.1.0.tgz(r-4.3-emscripten)
CopSens.pdf |CopSens.html✨
CopSens/json (API)
# Install 'CopSens' in R: |
install.packages('CopSens', repos = c('https://jiajingz.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/jiajingz/copsens/issues
- GaussianT_BinaryY - Dataset with Gaussian Treatments and Binary Outcomes
- GaussianT_GaussianY - Dataset with Gaussian Treatments and Outcomes
- mice_est_nulltr - Estimates of genes' effects on mice body weight using null treatments approach from Miao et al.
- micedata - Body weight and gene expressions of 287 mice
Last updated 2 years agofrom:0f6e60c06b. Checks:OK: 5 NOTE: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 17 2024 |
R-4.5-win | NOTE | Nov 17 2024 |
R-4.5-linux | NOTE | Nov 17 2024 |
R-4.4-win | OK | Nov 17 2024 |
R-4.4-mac | OK | Nov 17 2024 |
R-4.3-win | OK | Nov 17 2024 |
R-4.3-mac | OK | Nov 17 2024 |
Exports:bcalibratecal_rvgcalibrateplot_estimates
Dependencies:askpassbackportsbase64encBiobaseBiocGenericsbitbit64blobbroombslibcachemcallrcellrangerclicliprcolorspaceconflictedcpp11crayoncurlCVXRdata.tableDBIdbplyrdigestdplyrdtplyrECOSolveRevaluatefansifarverfastmapfontawesomeforcatsfsgarglegenericsggplot2gluegmpgoogledrivegooglesheets4gtablehavenhighrhmshtmltoolshttridsisobandjquerylibjsonliteknitrlabelinglatticelifecyclelubridatemagrittrMASSMatrixmemoisemgcvmimemodelrmunsellnlmeopensslosqppcaMethodspillarpkgconfigprettyunitsprocessxprogresspspurrrR6raggrappdirsRColorBrewerRcppRcppEigenreadrreadxlrematchrematch2reprexrlangrmarkdownRmpfrrstudioapirvestsassscalesscsselectrstringistringrsyssystemfontstextshapingtibbletidyrtidyselecttidyversetimechangetinytextzdbutf8uuidvctrsviridisLitevroomwithrxfunxml2yaml
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Calibration for Binary Outcomes | bcalibrate |
Calculate Robustness Value When Executing Worstcase Calibration | cal_rv |
Calibrate Estimate of Intervention Mean for Binary Outcome | cali_mean_ybinary_algm |
Dataset with Gaussian Treatments and Binary Outcomes | GaussianT_BinaryY |
Dataset with Gaussian Treatments and Outcomes | GaussianT_GaussianY |
Calibration for Gaussian Outcomes | gcalibrate |
Obtain Optimized Sensitivity Parameters Using Multivariate Calibration Criterion | get_opt_gamma |
Estimates of genes' effects on mice body weight using null treatments approach from Miao et al. (2020) | mice_est_nulltr |
Body weight and gene expressions of 287 mice | micedata |
Visualize Estimates of Treatment Effects | plot_estimates |